Stochastic processes on non-Archimedean Banach spaces
نویسندگان
چکیده
منابع مشابه
Stochastic processes and antiderivational equations on non-Archimedean manifolds
Stochastic processes on manifolds over non-Archimedean fields and with transition measures having values in the field C of complex numbers are studied. Stochastic antideriva-tional equations (with the non-Archimedean time parameter) on manifolds are investigated. 1. Introduction. Stochastic processes and stochastic differential equations on real Banach spaces and manifolds on them were intensiv...
متن کاملOn the Generalized Hyers–ulam Stability of Quartic Mappings in Non–archimedean Banach Spaces
Let X ,Y are linear space. In this paper, we prove the generalized Hyers-Ulam stability of the following quartic equation n ∑ k=2 ( k ∑ i1=2 k+1 ∑ i2=i1+1 . . . n ∑ in−k+1=in−k+1 ) f ( n ∑ i=1,i =i1,...,in−k+1 xi − n−k+1 ∑ r=1 xir )
متن کاملStochastic Integration for Lévy Processes with Values in Banach Spaces
A stochastic integral of Banach space valued deterministic functions with respect to Banach space valued Lévy processes is defined. There are no conditions on the Banach spaces nor on the Lévy processes. The integral is defined analogously to the Pettis integral. The integrability of a function is characterized by means of a radonifying property of an integral operator associated to the integra...
متن کاملSuperstability of $m$-additive maps on complete non--Archimedean spaces
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
متن کاملOperator Self-similar Processes on Banach Spaces
Operator self-similar (OSS) stochastic processes on arbitrary Banach spaces are considered. If the family of expectations of such a process is a spanning subset of the space, it is proved that the scaling family of operators of the process under consideration is a uniquely determinedmultiplicative group of operators. If the expectation-function of the process is continuous, it is proved that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2003
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171203108149